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APPLICATION OF A MODIFIED VLASOV MODEL
TO EARTHQUAKE ANALYSIS OF PLATES RESTING

ON ELASTIC FOUNDATIONS
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Department of Civil Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
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An application is presented of a modified Vlasov model to earthquake analysis of plates
resting on an elastic foundation. The effects of the subsoil depth, the plate dimensions and
their ratios on the dynamic response are investigated. The method of finite elements is used
for spatial integration and the Newmark-b method is used for time integration. A number
of graphs are presented to show the effects of plate dimensions and the subsoil depth on
the dynamic out-of-plane responses of plates on elastic foundations. Numerical examples
associated with the applicability of the model to earthquake analysis of plates resting on
elastic foundations are given.
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1. INTRODUCTION

The concept of plates resting on elastic foundations is extensively used by structural and
geotechnical engineers for static and dynamic analyses and for design of many practical
soil–structure interaction problems such as floor slabs of multistory buildings, highways
and airfield pavements. Developing a more realistic mathematical model for this complex
soil–structure interaction problem is essential to provide an accurate analysis of the
soil–structure system for safe and economical design. The well-known Winkler foundation
model has been widely used to analyze beams and plates resting on elastic foundations
because of its simplicity. Static and dynamic analyses of beams on elastic foundation using
the Winkler model have been performed by many authors [1–4]. Another simple model,
known as the Pasternak model, is obtained by connecting the top of the Winkler springs
with a shear layer. This model is also called the two-parameter foundation model and has
been used for dynamic analysis of beams on elastic foundation by several researchers [5–7].
Vlasov [8] developed a three-parameter model for beams and plates on elastic foundations
by introducing an arbitrary parameter g, including the effect of the shear strain energy in
the soil and the subsequent shear forces on the beam and plate edges. An iterative
technique using the modified Vlasov model has been performed for static analysis of plates
on elastic foundation [9, 10]. The same procedure was also used for dynamic analysis of
beams on elastic foundations [11, 12]. However, no studies have been found for the
dynamic analysis of plates resting on elastic foundations using the modified Vlasov model.

The aim in this paper is to analyze the dynamic behavior of foundation plates subjected
to earthquake loading using the modified Vlasov model. The finite element method is used
for spatial integration and the Newmark-b method is used for time integration. Stiffness
matrices and the mass matrix are obtained by using the so-called MZC rectangle finite
elements [13, 14]. An iterative solution technique depending upon the parameter g is
applied to investigate the effects of the subsoil depth, plate dimensions and their ratios on
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the response of rectangular plates on elastic foundations subjected to earthquake loading.
Numerical examples are given to show the performance and effectiveness of the proposed
finite element approach.

2. MATHEMATICAL MODEL

The governing equation for a flexural plate subjected to an earthquake excitation with
no damping can be given as

[M]{ẅ}+[K]{w}=−[M]{üg}, (1)

where [K] and [M] are the stiffness matrix and the mass matrix of the plate-soil system,
w and ẅ are the lateral displacement and the acceleration of the plate, and üg is the vertical
component of the earthquake acceleration.

2.1.     - 

An expanded form of the total strain energy in the soil-structure system (see Figure 1)
may be written as

P=Pp +Ps +V, (2a)

where Pp is the strain energy in the plate,

Pp = 1
2 gV 01
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Ps is the strain energy stored in the soil,

Ps = 1
2 g

H
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−a g
a

−a

sijeij dx dy dz (2c)

Figure 1. A sample plate on an elastic foundation.
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and V is the potential energy of the earthquake loading,

V=−gV

q̄w dx dy. (2d)

In these equations, w is the displacement of the plate in the vertical z direction, D is the
flexural rididity of the plate [10], H is the depth of the soil continuum, x, y, z are the
co-ordinate axes as shown in Figure 1, V is the domain of the plate, and q̄ denotes

−[M]{üg}.

According to the Kirchhoff theory for thin plates, the constitutive relation for the soil
medium are

s̄ij = ldij ēkk +2Gēij (3)

where l and G are the Lamé parameters [15] for a homogeneous and isotropic soil medium,
dij is the Kronecker delta, and sij , eij are the stress and strain tensors in the soil continuum,
respectively.

To simplify the model, the displacements in the x and y directions may be assumed to
be equal to zero. Further it is assumed that

w̄(x, y, z)=w(x, y)f(z), (4)

so that w̄(x, y, 0) becomes the vertical displacement of the surface of the soil and f(z) is
a mode shape function defining the variation of w(x, y, z) in the z direction.

Using variational principles and minimizing the total potential energy of equation (2a)
by taking variations in w and f yield [16] the following field equations. The field equation
in the domain of the plate, V, is

D94w−2t92w+ kw= q̄. (5a)

Outside the plate domain, the field equation is

−2t92w+ kw=0, (5b)

and the field equation in the domain of the soil for 0E zEH with the boundary conditions
f(0)=1 and f(H)=0 is

−m d2f/dz2 + nf=0. (5c)

In these equations

k=g
H

0

E� 0df

dz1
2

dz, 2t=g
H

0

Gsf
2 dz, (6a, b)

m=g
a

−a g
a

−a

E�w2 dx dy, n=g
a

−a g
a

−a

Gs (9w)2 dx dy. (6c, d)

Here Gs is the shear modulus of the subsoil and

E� =Es (1− ns )/(1+ ns )(1−2ns ). (7)

where Es and ns are the modulus of elasticity and Poisson’s ratio of the soil, respectively.
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The solution of equation (5c) for the given boundary conditions yields

f(z)= sinh g(1− z/H)/sinh g, (8)

where g/H=−n/m represents the variation of the deformation of the soil along the z-axis
[10, 16].

Equation (5b) has to be solved in the domain outside the plate with z=0. Vlasov and
Leont’ev [8] assumed an approximate solution for the displacement function w(x, y) by
dividing the domain outside the plate into eight regions, see references [10, 16] for more
explanation.

2.2.  

As mentioned before, the so-called MZC rectangle finite element is used in this study.
Nodal displacements at each node are

wi , 1wi /1y, −1wi/1x, i=1, 2, 3, 4, (9a)

and the displacement function is

w=[N]{we}, (9b)

where {we} is the nodal displacement vector containing all 12 components of the type
shown in equation (9a).

The matrix [N] contains the displacement shape functions [13, 14]. The stiffness matrices
of the plate and the soil can be derived by substituting equation (9b) into equation (2a).

By using the standard procedure in the finite element methodology for the assemblage
of elements, the global stiffness matrix is constructed as a half-banded matrix,

[K]= s
n

i=1

([kp ]+ [kk ]+ [kt ]), (10a)

where n is the total number of the plate finite elements, and [kp ] is the conventional element
stiffness matrix of the plate [13, 14]. The stiffness matrix for the axial strain effect in the
soil, [kk ], is obtained by minimizing the total energy with respect to each component of
the displacement vector [10], and may be written as

[kk ]= kabg
1

−1 g
1

−1

[N]T[N] dj dh, (10b)

in which a and b are the plate dimensions, and j and h are natural co-ordinates. [kt ] is
the stiffness matrix which accounts for the shear effect in the soil, expressed as

[kt ]=2tab g
1

−1 g
1

−1 0 1
a2 $1N

1j%
T

$1N
1j%+

1
b2 $1N

1h%
T

$1N
1h%1 dj dh. (10c)

The matrices [kk ] and [kt ] are not presented here since they will take excessive space, so
for more information about these matrices, see reference [10].

Equivalent nodal loads {F} can be computed as

{F}=gV

NT
i q̄ dx. (11)
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2.3.  

The dynamics of elastic structures is based on Hamilton’s variational principle with the
kinetic energy of

Pk = 1
2 gV

ẇTmẇ dV, (12a)

where w represents the vector of generalized displacement components relevant to inertial
forces, the dot denotes the partial derivative with respect to time t, and m is the mass density
matrix of the form

m= &m1

0
0

0
m2

0

0
0
m3', (12b)

where m1 = rph+ 1
3(rsH), m2 =m3 = 1

12(rph3), h is the thickness of the plate, and rp and rs

are the mass densities of the plate and the soil, respectively [17].
Then the formula for the consistent mass matrix of the plate on the elastic foundation

may be written as

M=gV

NT
i mNi dV. (12c)

In view of equation (9b), the following equation can be written for each finite element:

Ni =[N, dN/dy, dN/dx]. (12d)

The consistent mass matrix of the plate–soil system can be evaluated by substituting
equation (12d) into equation (12c) and integrating it over the domain. It is a symmetric
12×12 matrix, and its upper triangle is given in the Appendix for a rectangular finite
element with the dimensions of 2a×2b.

It should be noted that, in this study, the Newmark-b method is used for the time
integration of equation (1) by using the average acceleration method [18].

4. NUMERICAL EXAMPLES

4.1.   

A computer program is coded in FORTRAN for the dynamic analysis of the rectangular
plate on an elastic foundation. The solution technique is an iterative process. Displacement
computations are dependent upon the value of the g parameter which is initially set equal
to 1·0 when the time is equal to zero. The mode shape f is calculated and used for the
computation of the values of the modulus of the subgrade reaction, k, and the soil shear
parameter, 2t. Then these values are used to construct the coefficient matrices of the
plate–soil system and to calculate the displacement at discrete points of the finite element
mesh. Next the value of g is calculated, and the process is repeated for the new value of
g until the difference between the two successive values of g is less than a small prescribed
value, say equal to 0·001. The procedure described above is repeated for each time
increment. The final value of g at each time increment is taken to be the initial value of
g for the next time increment.
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4.2.    

In the light of the results given in reference [11, 19], the depths H of the subsoil are taken
to be 5 m, 10 m, and 15 m. The aspect ratio, ly /lx , of the plate are taken to be 1, 1·5, and
2·0. The ratios, H/ly , are taken as 0·25, 0·50, 0·75, and 1·0 for each subsoil depth
considered. The shorter length, lx , of the plate is kept constant at 10 m. The mass densities
of the plate and the subsoil are taken to be 2500 kg/m3 and 1700 kg/m3, respectively.

In order to obtain the response of each plate, the first 10 s of the vertical component
of the March 13, 1992 Erzincan earthquake in Turkey is used since the peak value of the
record occurred in this range [20]. Also, after the tenth second, it is seen that the responses
of the plate remained almost constant since no damping is considered in the study.

For the sake of accuracy in the results, rather than starting with a set of a finite element
mesh size and time increment, the mesh size and time increment required to obtain the
desired accuracy were determined before presenting any results. This analysis was
performed separately for the mesh size and time increment. It was concluded that the
results have acceptable error when equally spaced 10×10 elements are used for a
10 m×10 m plate if the 0·01 s time increment is used. Lengths of the elements in the x
and y directions are kept constant for different ly /lx ratios.

4.3. 

The purpose of this study was to calculate the time histories of the displacements at
different points on the plates considered for different subsoil depths and aspect ratios, but
presentation of all of the time histories would take up excessive space. Hence, only the
maximum displacements for different aspect ratios and subsoil depths are presented after
two time histories are given. This simplification of presenting only the maximum responses
is supported by the fact that the maximum values of these quantities are the most
important ones for design. These results are presented in graphical, rather than in tabular
form.

The time histories of the center displacements of the plates for ly =10 m and 20 m when
H=5 m are given in Figure 2 for a constant lx value of 10 m. The center displacements
of 10 m×10 m and 10 m×20 m plates for H=5 m reached their absolute maximum
values of 9 mm at 9·05 s, and of 20·3 mm at 7·70 s as can be seen from Figures 2(a) and
2(b). The maximum displacement of 10 m×20 m plate is larger than that of the
10 m×10 m plate as expected.

Figures (2a, b) indicate that the time histories of the center displacements of the plates
are different even with the same subsoil depth, as the dynamic characteristics of the
plate–soil system affect the responses, and that the periods of the center displacements are
becoming larger with increasing subsoil depth for a fixed aspect ratio and with increasing
aspect ratio for a fixed subsoil depth. This is expected since the system becomes more
flexible when the aspect ratio of the plate and/or the subsoil depth increases.

The maximum displacments of the plate are given in Figures 3 and 4 for different H
values, aspect ratios, and H/ly ratios. In these figures, the bottom part shows the upward
displacement, and the top part shows the downward displacements. These figures also
indicate that the maximum displacements do not vary in a smooth simple way as in the
case of static displacements. This behavior is due to sensitivity of the response to small
changes in the dynamic characteristics of the plates resting on elastic foundation.

Several general trends illustrated in Figures 3 and 4 are instructive, despite the somewhat
irregular patterns in the curves. The trends seen from these figures are as follows.

The maximum displacement increases with an increasing value of H for any value of
the aspect ratio, ly /lx .
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Figure 2. The time history of the center displacement of the plate (a) for H=5 m and ly =10 m; (b) for
H=5 m and ly =20 m.

The maximum displacement does not always decrease or increase with increasing values
of ly /lx for any values of the subsoil depth H. This irregular pattern is due to sensitivity
of the response to small changes in the period of the system.

The maximum displacement is more sensitive to the changes in the subsoil depth than
the changes in the aspect ratio.

The maximum displacement generally decreases as H/ly ratios increase for any values
of H. The exceptions to this trend in Figure 4, especially for H=15 m, are caused by
dramatic changes in the dynamic amplification factor as peaks and valleys are traversed
due to changes in the period of the system, as in the case of a beam resting on an elastic
foundation [11] and of a plate [21].

The maximum displacement always increases with increasing subsoil depth for any
values of H/ly ratios.

The deflected shapes of the plates on an elastic foundation for ly /lx =1 and 2 when
H=15 m for the time at which the maximum displacement occurs are given in Figure 5.
The deflected shapes of the other plates considered are not presented since they are similar
to the ones given here.

A plate on an elastic foundation with a larger subsoil depth and aspect ratio becomes
more flexible and thus less resistant to the load, so that this system will have a larger
displacement in a static sense, but this is not always satisfied, especially for H=15 m,
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Figure 3. The maximum displacement of the plate for different subsoil depths and aspect ratios. ly /lx values:
–Q–, 1·0; –q–, 1·5; –R–, 2·0.

because the maximum displacement of the dynamic system changes, depending on the
dynamic characteristics of the system.

In conclusion, it may be said that the maximum displacements of a plate resting on an
elastic foundation sometimes tend to be sensitive to small changes in the dynamic
characteristics, such as the period, as the subsoil depth and/or aspect ratio are changed.

Figure 4. The maximum displacement of the plate for different H/ly ratios and subsoil depths. H values (m):
–Q–, 5; –q–, 10; –R–, 15.

Figure 5. The deflected shape of the plate for different aspect ratios (H=15 m). ly /lx values: (a) 1, (b) 2.
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T 1

The maximum and minimum g

values for different subsoil depths
and aspect ratios

H (m) ly /lx gmin gmax

5 1·00 0·79 2·37
1·50 0·70 1·79
2·00 0·66 1·36

10 1·00 1·24 4·49
1·33 1·13 3·68
1·50 1·09 3·15
2·00 1·01 2·24
4·00 0·90 2·11

15 1·00 1·61 4·17
1·50 1·41 4·23
2·00 1·30 3·16
3·00 1·19 3·81
6·00 1·08 2·14

Despite their irregularities, the curves show trends that can be readily understood, and that
can be utilized in choosing the aspect ratio, depending on the subsoil depth when it is
known.

It should be noted that the results obtained by using the modified Vlasov model are not
compared with the results of Winkler model, which is simpler, because the stiffness
parameter, k, which has a constant value in the Winkler model at all time increments, takes
different values in the modified Vlasov model at each time increment.

The maximum and minimum values of the parameter g obtained at each run for different
subsoil depths and aspect ratios are presented in Table 1. As seen from this table, the values
of g increase with increasing subsoil depth for any values of the aspect ratios, except that
the maximum value of g decreases when H is increased from 10 m to 15 m for ly /lx =1.
In addition, the values of g decrease with increasing aspect ratio for a fixed subsoil depth,
except that the maximum value of g increases when ly /lx is increased from 1·0 to 1·5 for
H=15 m. This result complies with the results obtained previously [11, 19]. As the value
of g increases, the f function of equation (8) represents a rapidly dissipating displacement,
which is typical for large values of H. When the value of g approaches zero, the function
f yields a linear variation in displacements from top to bottom [19]. It should be noted
that most values of g obtained at each time increment are close to the minimum g for all
values of the subsoil depths.

For a plate resting on an elastic foundation subjected to the vertical component of an
earthquake excitation, it is somewhat difficult to interpret the effects of the subsoil depth
and the aspect ratio on the response, because both the frequency content of the earthquake
excitation and the exact natural frequency of the particular plate can make a difference
to its response. The curves presented herein can help the designer to anticipate the effects
of the subsoil depth and the aspect ratio on the earthquake response of a plate resting on
an elastic foundation.

5. CONCLUSIONS

The modified Vlasov model has been applied effectively to the earthquake analysis of
plates resting on elastic foundations. Two soil parameters were iteratively calculated
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depending on the parameter g which controls the decay of the stress distribution within
the foundation.

The following conclusions can be obtained from the study.
The maximum displacement increases with an increasing value of H for any values of

the aspect ratio.
The maximum displacement generally decreases as the H/ly ratio increases for any values

of H.
The maximum displacement increases with increasing subsoil depth for any values of

the H/ly ratio.
In general, the maximum displacement is more sensitive to the changes in the subsoil

depth than to the changes in the aspect ratio.
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APPENDIX: MASS MATRIX

m1,1 = 1727
3150m1 + 46

105(m2 +m3), m1,2 = 461
3150m1b+ 1

15m2b+ 11
105m3b,

m1,3 =− 461
3150m1a− 11

105m2a− 1
15m3a, m1,4 = 613

3150m1 + 17
105m2 − 46

105m3,

m1,5 = 199
3150m1b+ 1

30m2b− 11
105m3b, m1,6 =+ 137

1575m1a+ 13
210m2a− 1

15m3a,

m1,7 = 197
3150m1 − 17

105(m2 +m3), m1,8 =− 58
1575m1b+ 1

30m2b+ 13
210m3b,

m1,9 = 58
1575m1a− 13

210m2a− 1
30m3a, m1,10 = 613

3150m1 − 46
105m2 + 17

105m3,

m1,11 =− 137
1575m1b+ 1

15m2b− 13
210m3b, m1,12 =− 199

3150m1a− 11
105m2a− 1

30m3a,

m2,2 = 16
315m1b2 + 8

45m2b2 + 4
105m3b2, m2,3 =− 1

25m1ba, m2,4 =m1,5

m2,5 = 8
315m1b2 + 4

45m2b2 − 4
105m3b2, m2,6 = 2

75m1ba,

m2,7 = 58
1575m1b− 1

30m2b− 13
210m3b, m2,8 =− 2

105m1b2 − 1
45m2b2 + 1

35m3b2,

m2,9 = 4
225m1ba, m2,10 =−m1,11, m2,11 =− 4

105m1b2 − 2
45m2b2 − 1

35m3b2,

m2,12 =−m2,6, m3,3 = 16
315m1a2 + 4

105m2a2 + 8
45m3a2, m3,4 =−m1,6,

m3,5 =−m2,6, m3,6 =− 4
105m1a2 − 1

35m2a2 − 2
45m3a2, m3,7 =−m1,9, m3,8 =m2,9,

m3,9 =− 2
105m1a2 + 1

35m2a2 − 1
45m3a2, m3,10 =− 199

3150m1a+ 11
105m2a− 1

30m3a,

m3,11 =m2,6, m3,12 = 8
315m1a2 − 4

105m2a2 + 4
45m3a2, m4,4 =m1,1, m4,5 =m1,2,

m4,6 =−m1,3, m4,7 =m1,10, m4,8 =−m2,10, m4,9 =−m3,10, m4,10 =m1,7,

m4,11 =m2,7, m4,12 =m3,7, m5,5 =m2,2, m5,6 =−m2,3, m5,7 =m2,10,

m5,8 =m2,11, m5,9 =−m3,5, m5,10 =−m2,7, m5,11 =m2,8, m5,12 =m2,9,

m6,6 =m3,3, m6,7 =−m3,10, m6,8 =−m2,6, m6,9 =m3,1, m6,10 =m1,9,

m6,11 =−m2,9, m6,12 =m3,9, m7,7 =m1,1, m7,8 =−m1,2, m7,9 =−m1,3,

m7,10 =m1,4, m7,11 =−m1,5, m7,12 =−m1,6, m8,8 =m2,2, m8,9 =m2,3,

m8,10 =−m1,5, m8,11 =m2,5, m8,12 =m2,6, m9,9 =m3,3, m9,10 =m1,6,

m9,11 =−m2,6, m9,12 =m3,6, m10,10 =m1,1, m10,11 =−m1,2, m10,12 =−m1,3,

m11,11 =m2,2, m11,12 =−m2,3, m12,12 =m3,3.


